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Abstract – This work is concerned with an extension of the classical compressible Euler model of fluid dynamics in which the fluid internal energy is a
measure-valued quantity. This model can be derived from the hydrodynamic limit of a kinetic model involving a specific class of collision operators. In
the present paper, we investigate diffusive corrections of this fluid dynamical model derived from a Chapman–Enskog expansion of the kinetic model, in
the case where the collision time depends on the particle energy in the fluid frame. We show that the closure relations for the stress tensor and heat flux
vector differ from their expression in the usual Navier–Stokes model. We argue why such a feature could be used as a tool towards an understanding of
fluid turbulence from kinetic theory. 2001 Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

This work is concerned with a fluid-dynamical model which extends the classical Euler equations of
compressible gas dynamics. It consists of a coupled system for the fluid mean velocityu(x, t) on the one
hand, and for the particle energy distribution functiong(x, ξ, t) on the other hand, wherex andt are position
and time and whereξ = |v − u(x, t)|2/2 ∈ [0,∞) is the kinetic energy in the fluid rest frame of a particle of
velocity v. This system of equations is written in dimensiond (d = 1,2,3):

∂g

∂t
+ u · ∇xg − 2

d
ξ
∂g

∂ξ
(∇x · u)= 0, (1)

∂

∂t
(ρu) + ∇x(ρuu) + ∇x

(
2W

d

)
= 0, (2)

whereρ andW are the fluid number and energy densities, related tog through

ρ =
∫ ∞

0
g dv(ξ), W =

∫ ∞

0
gξ dv(ξ), (3)

with dv(ξ) = |Sd−1||2ξ |(d−2)/2 dξ and |Sd−1| is the measure of the sphere inR
d . The particle mass is set to

1 for simplicity. By integrating (1) with respect toξ , a closed system of equations for the number and energy
densitiesρ andW and the mean velocityu is obtained, which turns out to be identical to the usual compressible
Euler equations [1,2].
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It has been shown in [1,2] that this model can be formally derived from a hydrodynamic limit of a kinetic
equation

∂f

∂t
+ v.∇x f = 1

ε
Q(f ), (4)

wheref = f (x, v, t) is the kinetic velocity distribution function andε is the (supposedly small) Knudsen
number. The collision operatorQ(f ) describes the isotropization of the particle distribution function about the
fluid mean velocity and is written

Q(f )= 1

τ

(
Puf (f )− f

)
, (5)

with

Puf (f )=
1

4π

∫
S2
f
(
uf + |v − uf |ω)dω, uf =

∫
vf dv

(∫
f dv

)−1

, (6)

whereuf is the average velocity off and τ = τ(x, t) is the mean collision time. The collision model (6)
appears in space plasma physics as a simplified description of wave-particle interactions and is used in cosmic
ray modeling [3–6]. The existence of solutions for (4) was proved in [7].

In the present paper we shall argue that, in a very preliminary and primitive way, this kinetic model could also
provide a methodology for deriving compressible turbulence models from kinetic theory. Indeed, interpreting
f (x, v, t) as the velocity distribution of the small scale structures (rather than as a particle kinetic distribution)
the operator (4) provides a model for the interactions of these structures provided that the energy dissipation
occurs on a longer time scale than velocity isotropization. Since the interactions must be total momentum
preserving, isotropization must naturally occur about the average fluid velocity.

In section 2, we shall show that indeed, system (1), (2) can be rephrased as a gas dynamics model in which
the fluid internal energye =W/ρ is a measure-valued quantity. Therefore, the model (1), (2) retains the fact
that within one mesoscopic scale dx, a large number of fluid microstructures coexist, with an average velocity
identical with the fluid mean velocity but with a full spectrum of allowed internal energies. In the laminar regime
case, where no microstructure exists, the measureν(x,t)dξ reduces to a Dirac delta measureδ(ξ−e(x, t)), where
e(x, t) is the usual (monovalued) fluid internal energy satisfying the standard compressible Euler equations.

We can expect that the diffusive effects (such as viscosity and heat conductivity) are modified by the
multivaluedness of the internal energy. This can be a way to establish how turbulence (here represented by
the ‘continuous’ spectrum of fluid internal energies) affects diffusion. In this direction, diffusive corrections
to (1), (2) are derived in [2] by means of a Chapman–Enskog expansion of (4). As expected, this procedure
does not lead to the compressible Navier–Stokes equations in their usual form: the heat flow vector appears
to be a function of the higher-orderξ -moments ofg. This indicates that the model is able to capture certain
features of the microscopic structures in the expressions of the dissipative fluxes, in a similar fashion as other
phenomenological turbulence models like theK−ε model [8] do.

However, in [2], the viscosity appears similar as in the conventional Navier–Stokes model. This together
with the fact that the isotropization timeτ is independent of the energy of the microstructures indicates that the
model (5)–(6) must be complexified in order to approach reality.

The major goal of the present paper is to investigate the influence of an energy-dependent isotropization time
τ(ξ). This point is developped in sections 3 and 4. In this case, conservation of total momentum requires that
isotropization occurs about an ‘isotropization velocity’ which may be different from the fluid average velocity.
Near equilibrium (ε � 1), these two velocities are close up to the orderε. For this model, the viscosity as
well as the heat flux appear dependent on the full spectrum of fluid energies represented byg. Therefore, a



P. Degond, M. Lemou / Eur. J. Mech. B - Fluids 20 (2001) 303–327 305

ξ -dependent collision timeτ leads to expressions of the diffusivities that seem to take better account of the
presence of fluid microstructures than the constantτ model.

To be useful in practical cases, the model must not be too complex. The energy-distribution functiong

satisfies a second-order partial differential equation in a four-dimensional space(x, ξ), the numerical resolution
of which would often be prohibitive. Therefore, in section 5, we shall propose closure strategies for the system
of ξ -moments ofg, which result in a lower-dimensional system of equations to solve.

Finally, we show in section 6 that our method, although seemingly restricted to relaxation time operators,
is indeed more general and is valid for any rotationally invariant operator which preserves total momentum
and the energy in an appropriate frame. In particular, our results also apply to Fokker–Planck type collision
operators.

We end this introductory section by saying that the same methodology could be developped for
incompressible fluids. We refer the reader to [2] for the case of a constantτ . The case of aξ -dependentτ
will be dealt with in future work. We also refer to [2] for a more detailed bibliography about the mathematical
aspects of hydrodynamic and diffusion limits.

2. The fluid-dynamical model with measure-valued internal energy

In this section, we develop some considerations about the model (1), (2). We first show that it can be
interpreted as a gas dynamics model with measure-valued internal energy. Let us consider the motion of a
fluid element dx dξ in (x, ξ) space, according to equation (1), assuming that the velocity fieldu(x, t) is given
and smooth. We note that, throughout this paper, we shall disregard shock situations, whereu is discontinuous.
Shock theory for the multivalued energy model (1), (2) is an essentially open problem. With a smoothu, the
trajectory(X(t),�(t)) of this fluid element is a characteristic of (1) and consequently solves the following
differential system:

Ẋ(t)= u
(
X(t), t

)
, �̇(t)= −2

d
�(t)(∇x · u)(X(t), t), (7)

where the dot denotes the time derivative. We notice that the motion inx-space is independent of the position
in theξ -space and coincides with the convection of a usual fluid element by the velocity fieldu.

Let us denote by(X(t;x, s),�(t;x, ξ, s)) the position at timet of the fluid element issued from(x, ξ) at time
s. For a given pair(s, t), the mappingx → X(t;x, s) is a diffeomorphism of the position space. Its Jacobian
J (t;x, s) is the ratio of the volume elements: dX = J dx. According to a well-known result,J satisfies the
differential equation

J̇ (t)= J (t)(∇x · u)(X(t), t), (8)

But, using the second equation of (7), we can write

J−1J̇ = (∇x · u)(X(t), t) = −d
2
�−1�̇,

or
d

dt

(
�d/2J

) = 0, (9)

which means that�d/2 dX is a constant of motion. Mathematically, one should say that the differential form
ω(x, ξ)= ξd/2 dx is conserved by the flow in(x, ξ) space (i.e. at any time, its reciprocal image under the flow
is equal to itself).
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This identity reminds of another identity valid at the level of the usual compressible Euler equations. Indeed,
the internal energye(x, t) is the solution of

∂e

∂t
+ (u · ∇x)e− 2

d
e(∇x · u)= 0,

which implies thatE(t) = e(X(t), t) satisfies (9) with� replaced byE and consequently thatEd/2 dX is
constant along a solution of the Euler equations (mathematically, one should say that the differential form
αt = e(x, t)dx is convected by the flow, i.e. the reciprocal image ofαt by the flow is equal toα0).

Both identities reflect the well-known evolution of the internal energy under an adiabatic compression or
rarefaction. In other words, each fluid element dx dξ in (x, ξ) space evolves according to the same adiabatic
law as the single fluid element dx in conventional gas dynamics. Therefore, one can view model (1) as the
natural extension of usual gas dynamics when the fluid internal energy is multivalued. The picture can be
summarized as follows: an arbitrary fluid volume element dx consists of infinitely many subelements, each
of them having its own internal energy but sharing the same drift velocity as the ‘big’ fluid element. The
probabilistic repartition of the internal energyξ of the fluid subelements of the volume dx is obtained fromg
by constructing the probability measure

ν(x,t)(dξ)= ρ−1(x, t)g(x, ξ, t)dv(ξ), dv(ξ)= ∣∣Sd−1∣∣|2ξ |(d−2)/2 dξ. (10)

The measureν(x,t)(dξ) expresses the probability that in a given fluid element dx at time t , one finds a
subelement with internal energy in the range(ξ, ξ + dξ). We obviously have

∫
ν(x,t)(dξ)= 1,

∫
ξν(x,t)(dξ)= W

ρ
= e.

Therefore, the fluid internal energy is just the average of the internal energy of the subelements with respect to
the probabilityν.

To be complete, this description must lead to the usual compressible Euler equations when the energy
distribution of the fluid subelements is monovalued, i.e. whenν(x,t)(dξ) = δ(ξ − e(x, t))dξ , or equivalently
when

G := ∣∣Sd−1∣∣|2ξ |(d−2)/2g = ρδ
(
ξ − e(x, t)). (11)

It is easy to see thatG satisfies the conservative form of (1):

∂G

∂t
+ ∇x · (uG)− ∂

∂ξ

(
2

d
ξ(∇x · u)G

)
= 0. (12)

Now, it is an exercise to show thatG satisfies (12), coupled with (2) if and only if the triple(n,u, e) satisfies
the usual compressible Euler equation.

There is another particular solution of system (1), (2) which yields the gas dynamics equations: the
Maxwellian

Mρ,T (ξ)= ρ

(2πT )d/2
exp(−ξ/T ), (13)

whereT is the temperature. Again, it is an exercise to show thatMρ,T is a solution of (1) coupled with (2) if
and only if(ρ,u, T ) satisfies the usual compressible Euler equations.
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It is interesting to remark that these two particular classes of solutions (11) and (13) do not overlap, and
that in particular, (11) does not correspond to a zero temperature limit of (13). The delta function solutions
(11) correspond to a phase-space distribution functionf (x, v, t) which is a measure supported by a sphere
in velocity space, while the Maxwellian corresponds to the usual concept of thermodynamical equilibrium.
While the Maxwellian naturally appears in the microscopic description of molecular motion, the delta solution
is the lead from the multivalued energy model to the conventional one. This remark supports the use of
the multivalued energy model as a convenient statistical model for turbulence modeling, as the statistical
distribution is not related to the equilibrium statistics of the microscopic motion.

One of the major consequences of turbulence in a fluid flow is the increase of the diffusivities (viscosity
and thermal conduction), due to the large gradients associated with the small scale turbulent motions. Since in
many practical applications it is too expensive to resolve the small scales, various phenomenological models
have been proposed. They attempt to describe the effects of the small scale unresolved turbulent motion on
the large scale motion, and particularly on the diffusivities. They are based on a statistical treatment of the
fluctuations of the fluid quantities and involve necessary closure assumptions (see, e.g., theK − ε model [8]).
We refer to [9–11] for general expositions of this problem.

Therefore, it is a natural question to investigate what are the shapes of the diffusivities associated with
the model with multivalued energy (1), (2). Indeed, if the collision operator (5) is believed to provide a
reasonable description of the interactions between the small scale structures, the diffusivities resulting from
these interactions will be found by a higher order (Chapman–Enskog) expansion inε of the kinetic equation
(4). This has been performed in [2] for a constant collision timeτ . In [2], it is shown that the multivalued
energy model does not reduce to the conventional compressible Navier–Stokes equations by a simple moment
procedure. Indeed, the resulting heat-flux vector is given in terms of a higher order moment of the energy
distribution function, showing that heat dissipation depends on the full statistics of the fluid subelements. At
variance, the viscous stress tensor is not modified from its Navier–Stokes value. This apparent insensitivity of
the viscous stresses to the energy statistics of the fluid may be an artefact due to the crude simplicity of the
collision model with a constant collision time.

The goal of the present paper is to prove that a more complex collision law, with a collision timeτ depending
on the relative energy in the fluid frame, actually yields diffusivities which are both (i.e. viscosity as well as
heat dissipation) dependent on the energy statistics of the fluid. We first develop some considerations about the
collision model in the next section.

3. The collision operator and the kinetic equation

3.1. The collision operator

We consider the following collision operator:

Q(f,u)= 1

τ
Luf, (14)

with

Luf (v)='u(f )(v)− f (v)= 1

|Sd−1|
∫

Sd−1
f
(
u+ |v − u|ω′)dω′ − f (v). (15)

The functionf = f (t, x, v) is the particle distribution function, depending on the position vectorx ∈ R
d , the

velocity v ∈ R
d , and the timet > 0. The vectoru= uf (t, x) is some kind of average velocity off which will
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be specified below. The quantity|v− u|2/2 is therefore the particle kinetic energy in a reference frame moving
with velocity u and will be referred to as the ‘relative kinetic energy’).'u is the orthogonal projector (inL2)
onto the space of functions depending on|v − u| (or equivalently, on the relative kinetic energy|v − u|2/2)
only. Therefore'u(f ) = 'u(f )(|v − u|2/2). The collision timeτ = τ(t, x, |v − u|2/2, [f ]) is supposed to
depend locally uponx, t , and upon the relative kinetic energy|v − u|2/2. Moreover,τ is an operator acting
on f through its dependence with respect tov. Additionally, we assume that for any(t, x, v) and anyf ,
τ(t, x, |v − u|2/2, [f ]) only depends onv through|v − u|2/2. An example of suchτ is τ(Pu(f )), but many
other examples can be devised. Later on, we shall omit the dependences ofτ uponx andt .

Now, we make the definition ofuf more precise. We determineuf by the requirement thatQ is momentum-
preserving. To make it explicit, we first need the following:

PROPOSITION 3.1: (i) We have:
∫

Sd−1
Q(f,u)

(
u+ |v− u|ω)dω= 0, (16)

or equivalently:
∫

Rd
Q(f,u)(v)φ

( |v− u|2
2

)
dv = 0, (17)

for all functionsφ(ξ), ξ > 0. In particular,Q(f,u) preserves the density and the average fluid energy in the
frame moving with velocityu, which is expressed by:

∫
Rd
Q(f,u)(v)dv = 0,

∫
Rd
Q(f,u)(v)

|v− u|2
2

dv = 0. (18)

(ii) The null-space ofQ is the space of functionsφ( |v−u|2
2 ) where the functionφ(ξ) and the vectoru ∈ R

d

are arbitrary.

(iii) The collision operator(14) preserves momentum, i.e. satisfies
∫

Rd
Q(f,u)(v)v dv = 0, (19)

if and only if the velocityu satisfies:

∫
Rd
(v− u) τ−1

( |v− u|2
2

, [f ]
)
f (v)dv = 0. (20)

Then, the operator preserves the total fluid energy:

∫
Rd
Q(f,u)(v)

|v|2
2

dv = 0. (21)

Proof. –(i) Since'u(f ) is a function of|v − u| and sinceτ depends onv only through|v− u|, we have:

1

|Sd−1|
∫

Sd−1
Q(f,u)

(
u+ |v − u|ω)dω = 1

τ
('uf −'uf )= 0,

which gives equation (16). Now, we have
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∫

Rd
Q(f,u)(v)φ

(|v − u|)dv

=
∫ +∞

0

∣∣Sd−1∣∣'u

(
Qu(f,u)

)
f
(|v − u|)|v− u|d−1φ

(|v− u|)d(|v − u|) = 0.

Relation (18) is obtained by takingφ(ξ)= 1 andφ(ξ)= ξ in (17).

(ii) If f = f (|v − u|) then'uf = f andQ(f,u)= 0. Conversely, ifQ(f,u)= 0 thenf ='uf depends
on v only through|v − u|.

(iii) Because the operator preserves the mass (18), we have

∫
Rd
vQ(f,u)(v)dv =

∫
Rd
(v− u)Q(f,u)dv = −

∫
Rd
(v − u)1

τ
f (v)dv.

We then deduce (20). The conservation of the total energy (21) comes from combining (18) and (19), using the
identity |v|2/2= |v− u|2/2− |u|2/2+ v · u. ✷

In the remainder of the paper, we shall takeu= uf satisfying (20) in the collision operator (14), (15).

Note that equation (20) definesuf implicitly (because of the dependence ofτ−1 uponuf ). The velocityuf
does not coincide with the usual fluid mean velocityū= ūf defined by

ū= 1

ρ

∫
Rd
vf (v)dv, ρ =

∫
Rd
f (v)dv. (22)

In the particular case of a distribution function of the formf = f (|v− ū|), the two concepts of average velocity
coincide:uf = ūf (more precisely,̄uf is a solution of (20)). In this paper, we shall not dwell on the problem of
solving (20) and we shall assume that there exists a unique ‘physically admissible’ velocity field solving (20).

3.2. The kinetic equation: approximate solutions and change to the local frame

We now consider the kinetic equation (4), with the collision operator defined by (14):

Tf ε = 1

ε
Q
(
f ε, uf ε

)
, Tf ≡ ∂f

∂t
+ v.∇x f. (23)

We define an approximate solution of (23) at the ordern to be a solutionf̃ ε of

T f̃ ε = 1

ε
Q
(
f̃ ε, uf̃ ε

)+ O
(
εn
)
. (24)

We show that equation (20) for the definition ofuf can be equivalently replaced by an equation involving the
first moments off .

Indeed, equation (23) is equivalent to the following system, of unknownsf ε anduε:



Tf ε = 1

ε
Q
(
f ε, uε

)
,

∫
Rd

(
v− uε)τ−1

( |v − uε|2
2

, f ε
)
f ε(v)dv = 0.

(25)
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Since the second equation of (25) is equivalent to to the fact thatQ is momentum-conservative, system (25) is
equivalent to:



Tf ε = 1

ε
Q
(
f ε, uε

)
,∫

Rd
vTf ε(v)dv = 0.

(26)

Then,uε appears as the Lagrange multiplier of the momentum preservation constraint as expressed by the
second equation of (26).

The same splitting can be performed for the ordern approximate solutions: indeed,̃f ε is an ordern
approximate solution according to definition (24) if and only if there existsũε such that(f̃ ε, ũε) satisfies:



T f̃ ε = 1

ε
Q
(
f̃ ε, ũε

) + O
(
εn
)
,∫

Rd
vT f̃ ε(v)dv = O

(
εn
)
.

(27)

The ‘only if’ part is obvious with the choicẽuε = uf̃ ε by multiplying (24) byv, integrating it with respect tov
and using that

∫
Rd
vQ

(
f̃ ε, uf̃ ε

) = 0. (28)

Conversely, from (27) and (28), we have

∫
Rd
vQ

(
f̃ ε, ũε

) −
∫

Rd
vQ

(
f̃ ε, uf̃ ε

) = O
(
εn+1).

Thus, under the hypothesis that equation (20) has a unique branch of ‘physically admissible’ solutions and
that this branch consists of regular solutions of the non-linear equation (20), we formally get:

ũε = uf̃ ε + O
(
εn+1).

This shows that every solutioñf ε of (27) is a solution to (24).

We now transform the approximate solutions defined by (27) by evaluating the kinetic velocities in the frame
moving with velocityũε. We introduce:

p = v− ũε, F̃ ε(p)= f̃ ε(v), ξ = |v− ũε|2
2

. (29)

To simplify the notations, we shall omit the subscriptε, the tildes and the argumentst andx of the function
τ whenever the context is clear. We still denote byf andu the solutions to (27), and byF the corresponding
function obtained by the change of variable (29). In terms ofF = F(p), we have

Tf = ∂F

∂t
+ u · ∇xF + p · ∇xF −

(
∂u

∂t
+ (∇xu)u

)
· ∇pF − (∇xu)p · ∇pF,
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where ∇xu denotes the matrix whose coefficients are(∇xu)ij = ∂ui/∂xj . Then the first equation of (27)
becomes:

A(F,u)= 1

ε

1

τ(ξ,F )
LF + O

(
εn
)
, (30)

whereL is the operatorL0 given by (15) foru= 0:

LF(p)='(F)(p)−F(p)= 1

|Sd−1|
∫

Sd−1
F
(|p|ω′)dω′ − F(p), (31)

and



A(F,u)= TuF + p · ∇xF −Cu · ∇pF − (∇xu)p · ∇pF,
TuF = ∂F

∂t
+ u · ∇xF,

Cu = ∂u

∂t
+ (∇xu)u.

(32)

Now we recall thatu andf are linked by the second equation (27), which can be written in terms ofF :

∫
Rd
pA(F,u)(p)dp = O

(
εn
)
. (33)

Using the expression ofA, we obtain by a simple integration:

∫
Rd
pA(F,u)(p)dp = B(F,u),

with

B(F,u)= Cu

∫
Rd
F dp+ ∇x ·

(∫
Rd
p⊗ pFdp

)
+
(
∂

∂t
+ u · ∇x + ∇xu+ (∇x · u)I

)(∫
Rd
pF dp

)
. (34)

Finally, problem (27) is equivalent to the following system of equations:



τ(ξ,F )A(F,u)= 1

ε
LF + O

(
εn
)
,

B(F,u)= O
(
εn
)
,

(35)

with A(F,u) given by (32) andB(F,u) by (34).

In (35), the collision operatorL is linear and independent ofu. L is clearly a self-adjoint operator (inL2)
and its null-space is simply the space of isotropic functions (i.e. the functions depending onp only through
|p|). Note also that the implicit character of equation (20) is now concentrated in the second equation of (35):
for a givenF , the correspondingu is simply a solution of an equation whose coefficients are averages of the
distribution functionF with respect top.
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4. Approximate macroscopic models to the first and second orders

4.1. The Chapman–Enskog expansion, review and notations

In this subsection, we first review some basic facts about the Chapman–Enskog expansion. This method
allows to find successive approximate solutions to kinetic equations of the general form (4) in terms of the
small parameterε. To simplify the general presentation, we shall restrict ourselves to a linearQ(f ) although
the method also standardly applies to non-linear operators. The presentation below is inspired from [12]. We
also refer to [13–16] for general expositions about fluid-dynamical limits of kinetic theory.

The null-spaceN(Q∗) of the adjointQ∗ of the collision operator plays a central role. We denote by' the
L2-orthogonal projection ontoN(Q∗). The choice of the notation' is not coincidental because in our example
(14),' is actually given by (15). We also denote by〈f,g〉 the usual scalar product between two elementsf

andg of L2.

The Chapman–Enskog method consists in looking for an ordern approximate solution in the sense (24) of
the following form:

f ε,n = f ε0 + εf ε1 + ε2f ε2 + · · · + εnf εn , (36)

where the functionsf εk may depend onε but remain O(1) asε→ 0. Below we will see thatf ε0 is an equilibrium
function (f ε0 ∈ N(Q)), and that thef εk , k � 1, are successive corrections off ε0 and are taken inN(Q)⊥. For
simplicity we will omit the subscriptε in all the sequel.

For an approximation of order 1, we only have to choose (formally)f0 andf1 such that:

Q(f0)= 0 and Tf0 =Q(f1).

For these equations to admit solutions we must choosef0 in N(Q) such thatTf0 ∈N(Q∗)⊥, which also reads:

f0 ∈N(Q) and 'Tf0 = 0. (37)

The solvability equation (37) leads to the macroscopic model associated with (4) at the first order inε.

At higher orders, a straightforward identification between terms of the same order inε (i.e. the Hilbert
expansion) does not lead to the expected expression of the diffusive fluxes (such as, e.g., viscosity and thermal
conduction). To that aim, a more complex matching of the terms of the various orders must be performed. First
we write

Tf0 + εTf1 + ε2Tf2 = 1

ε

{
Q(f0)+ εQ(f1)+ ε2Q(f2)

}+ O
(
ε2), (38)

which implies in particular that

'Tf0 = O(ε). (39)

Thus the quantity'Tf0 can be substracted from the zeroth-order term and added to the first-order one. We
then obtain by identification:

Q(f0)= 0,

Tf0 −'Tf0 =Q(f1),

Tf1 + 1

ε
'Tf0 =Q(f2).

(40)
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The second equation of (40) satisfies the solvability condition by construction. It can be solved byf1 =
Q−1(Tf0 −'Tf0) with Q−1 the inverse of the restriction ofQ to N(Q)⊥. However, for the third equation
to have a solution, one has to write a solvability condition:

'Tf0 + ε'Tf1 ='Tf0 + ε'TQ−1(I −')Tf0 = 0. (41)

In the case of collisions operators of Boltzmann type, it is well-known that the equation (41) is equivalent to
the system of Navier–Stokes equations with diffusion terms proportional toε.

The Chapman–Enskog method can be pursued to higher orders, following the same process as for the order
2. The ordern� 3 expansion leads to the following solvability condition onf0:

'Tf0 + ε'TQ−1(I −')Tf0 +
n−1∑
i=2

εi'T
[
Q−1(I −')T ]if0 = 0. (42)

However, in the present paper, we shall restrict to first- and second-order approximate solutions because higher-
order fluid models (like the third-order or ‘Burnett’ model) are generally ill-posed.

4.2. The multivalued energy model to first order

In this section, we check that system (1), (2) is indeed the first order approximate model of (23), and we
use the formulation (35). According to the Chapman–Enskog method, we expandF = F0 + εF1 and insert this
expression into system (35):



τ(ξ,F0 + εF1)

[
A(F0, u)+ εA(F1, u)

] = 1

ε
LF0 +LF1 + O(ε),

B(F0, u)+ εB(F1, u)= O(ε).
(43)

Identifying terms of the same order inε and removing the terms of orderε, we obtain




LF0 = 0,

τA(F0, u)=LF1,

B(F0, u)= 0.

(44)

The first equation of (44) implies thatF0 is a function ofξ = |p|2/2 only:F0(p)= g(ξ). The second equation
of (44) admits a solutionF1 if and only if'A(F0, u)= 0. We have

A(F0, u)= A(g, u)= Tug + p·
(

∇xg−Cu ∂g
∂ξ

)
−[
(∇xu)p · p]∂g

∂ξ
, (45)

with Tu andCu given in (32). To make'A(g, u) andB(g, u) explicit, we use the following elementary lemma
(the proof of which is omitted):

LEMMA 4.1: If φ is a function ofξ = |p|2
2 , then we have:

'
[
p⊗ pφ(ξ)

] = 2ξ

d
φ(ξ)I, '

[
Mp · pφ(ξ)] = 2ξ

d
Tr(M)φ(ξ),
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and

'
[
(Mp · p)p⊗ p φ(ξ)

] = 4ξ2

d(d + 2)

[
Tr(M)I +M+MT

]
φ(ξ),

'
[
(Mp · p)(Np · p)φ(ξ)] = 4ξ2

d(d + 2)

[
Tr(M)Tr(N )+ (M+MT ) : N ]

φ(ξ),

for any d × d matricesM and N possibly depending on(x, t). We have denoted byA : B the contracted
product between twod × d matricesA andB (A : B = Tr(AB)), byTr(A) the trace of the matrixA and byI
the identityd × d matrix.

Then, we easily get:

'A(g, u)= Tug − 2

d
(∇x · u)ξ ∂g

∂ξ
, B(g, u)= ρCu + ∇x

(
2W

d

)
. (46)

It follows that system (44) is equivalent to system (1), (2) forg andu. We recover the same result as in [1] and
[2]. In particular, at this order of approximation, the discrepancy between the fluid mean velocityūf and the
isotropization velocityuf is not detectable.

4.3. The multivalued energy fluid model to second order

We seek an order two approximate solution to (26). We recall that this corresponds to a solution(F,u) to
system (35) forn= 2. As for the first order, we assume thatF has the form:

F = g(t, x, ξ)+ εF1 + ε2F2, (47)

and insert this expression into equations (35)


τ(ξ,F )

{
A(g, u)+ εA(F1, u)+ ε2A(F2, u)

} = LF1 + εLF2 + O
(
ε2),

B(g, u)+ εB(F1, u)+ ε2B(F2, u)= O
(
ε2). (48)

The first equation implies in particular that'A(g, u)= O(ε). Thus the first equation of (48) can be rewritten
in the form

τ(ξ,F )

{
(I −')A(g, u)+ ε

[
A(F1, u)+ 1

ε
'A(g, u)

]
+ ε2A(F2, u)

}
= LF1 + εLF2 + O

(
ε2). (49)

We identify the terms of the same order inε and remove the terms of order 2, and get



τ(ξ,F )(I −')A(g, u)= LF1,

τ (ξ,F )

(
A(F1, u)+ 1

ε
'A(g, u)

)
=LF2,

B(g, u)+ εB(F1, u)= 0.

(50)

Now we remark that the restriction ofL toN(L)⊥ is simply−I and then its inverseL−1 is also equal to−I . If
we seekF1 ∈N(L)⊥, the solution of the first equation (50) is

F1 = −τ(ξ,F )(I −')A(g, u). (51)
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Then, the second equation of (50) has a non-empty set of solutionsF2 if and only if the projection' of the
left-hand side vanishes. Therefore, the last two equations of (50) are equivalent to



'A(g, u)+ ε'A(F1, u)= 0,

B(g, u)+ εB(F1, u)= 0.
(52)

Now, the expression ofF1 contains a dependence onF = g + εF1 + ε2F2 through the functionτ . ButF1 only
appears in terms of order 1 inε in (52). Therefore, with the same accuracy, we can replaceτ(F ) by τ(g) in
(51) and let

F1 = −τ(ξ, g)(I −')A(g, u). (53)

The two equations (52) withF1 given by (53) provide a sufficient condition on the pair(g, u) which makesF
given by (47) an order 2 approximate solution of the kinetic model (23). Furthermore, any order 2 approximate
solution of the form (47) withF1, F2 ∈N(L)⊥ is given by equation (52) as the next proposition shows:

PROPOSITION 4.2: The pairF = g + εF1 + ε2F2, u with 'F1 = 'F2 = 0, is an order2 approximate
solution to the kinetic equation(35) if and only if(g, u) is a solution of(52).

Proof. –We insert the expansionF = g+ εF1 + ε2F2 into (35) and obtain (48). For the first equation of (48),
we take the orthogonal projection ontoN(L) and obtain:

'
[
A(g, u)+ εA(F1 + εF2, u)

] = O
(
ε2). (54)

Then the first equation of (48) is equivalent to:

L(F1 + εF2)= τ(ξ,F )[(I −')A(g, u)+ ε(I −')A(F1 + εF2, u)
] = O

(
ε2). (55)

BecauseF1,F2 ∈N(L)⊥, we can now applyL−1 and obtain:

F1 + εF2 = τL−1[(I −')A(g, u)+ ε(I −')A(F1 + εF2, u)
]+ O

(
ε2). (56)

We insert the expression ofF1 + εF2 given by (56) into (54) and get

'
[
A(g, u)+ εA(

τL−1(I −')A(g, u), u)] = O
(
ε2).

With the second equation of (48), we finally obtain:



'
[
A(g, u)+ εA(

τL−1(I −')A(g, u), u)] = O
(
ε2),

B(g, u)+ εB(τL−1(I −')A(g, u), u) = O
(
ε2). (57)

We can now replaceτ(F ) by τ(g) because we are interested only in terms of order less than 1 inε. This leads
to (52). Therefore, such an order two approximate solution is necessarily given by (52).✷

Equations (52) lead to the following model:

PROPOSITION 4.3: System(52) is equivalent to the following system:
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


∂g

∂t
+ u · ∇xg− (∇x · u)2ξ

d

∂g

∂ξ
= ε

2

d
ξ1−d/2

(
∇x −Cu ∂

∂ξ

)(
τ(ξ, g)ξd/2

(
∇x −Cu ∂

∂ξ

)
g

)

+ ε 4

d(d + 2)
ξ1−d/2 ∂

∂ξ

(
τ(ξ, g)ξ

d+2
2
∂g

∂ξ

)(
σ (u) : (∇xu)),

ρ

(
∂ū

∂t
+ (∇xū)(ū)

)
+2

d
∇xW = ε∇x · (µτσ (ū)),

(58)

whereu and ū are linked by:

ρ(ū− u)= −ε
∫

Rd

2ξ

d
τ

(
∇xg −Cu ∂g

∂ξ

)
dp (59)

and with:
(
ρ(x, t)

W(x, t)

)
=

∫
Rd
g(x, ξ, t)

( 1

ξ

)
dp, σ (u)= ∇xu+ (∇xu)T − 2

d
(∇x · u)I (60)

(where the exponentT denotes the transpose of a matrix) and

µτ = −1

d(d + 2)

∫
Rd

|p|4τ(ξ, g)∂g
∂ξ

dp. (61)

We recall thatdp= |Sd−1||2ξ |(d−2)/2 dξ .

Before proving this proposition, we comment on the result. The second equation (58) is the fluid momentum
conservation equation in a form close to the usual Navier–Stokes equation, except for the expression of
the viscosity (61). The first equation (58) gives the diffusive corrections to the equation (1). There are two
dissipative terms at the right-hand side, respectively corresponding to the heat dissipation and to the viscous
force. The heat dissipation operator appears as a degenerate diffusion operator acting along oblique lines in
the (x, ξ)-space, whose slopes are equal to the acceleration of a fluid elementCu. Note that, from the second
equation (58), up to terms of orderε2, it is possible to replaceCu in the first equation of (58) by−2(ρd)−1∇xW .
The viscous forces produce a diffusion in theξ -space only.

The model (58) differs from that derived in [2] not only in the expression of the viscosity and in the fact that
theξ -dependentτ appears in the equation forg, but essentially in the discrepancy between the two velocitiesū

andu. We shall see (see remark 1 below) that up to terms of orderε2, ū is the usual fluid mean velocity. From
(59), ū differs from the isotropization velocityu by a term of orderε, which involves the derivative ofg along
the same lines in(x, ξ) space as those appearing in the degenerate heat dissipation operator. Furthermore,ū−u
vanishes in the case of a constantτ becauseτ can be taken out of theξ integral and what remains vanishes
identically by an integration by parts. Therefore, the discrepancy appears as the result of an interplay between
the ξ -dependentτ and the existence of gradients ofg along certain prefered lines in the(x, ξ) space. Further
mechanical interpretations of this model will be developed in future work.

Proof. –We just have to prove that system (52) is equivalent to system (58). We already know the expression
of 'A(g, u) from (46). Using (53), we have:

F1 = −τ(I −')A(g, u)= −τp·
(

∇xg −Cu ∂g
∂ξ

)
+τ [Up · p]∂g

∂ξ
, (62)
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with U being the following traceless tensor

U(t, x)= ∇xu− d−1(∇x · u)I. (63)

Using the expression (32) of the operatorA, we then obtain:

A(F1, u) = Tu

(
Up · pτ(g)∂g

∂ξ

)
−p · ∇x(p.τ(g)∇xg)

+ p · ∇x
(
Cu · pτ(g)∂g

∂ξ

)
+Cu · ∇p(p · τ(g)∇xg)−Cu · ∇p

(
Cu · pτ(g)∂g

∂ξ

)

− (∇xu)p · ∇p
(
Up.pτ(g)∂g

∂ξ

)
+G(p),

(64)

whereG(p) only involves odd terms with respect top. In particular, we have'G = 0. By developing the
derivatives with respect top, we get

A(F1, u) = Tu

(
Up · pτ(g)∂g

∂ξ

)
−∇x · ((p⊗ p)τ(g)∇xg)+Cu · τ(g)∇xg

+ ∇x·
(
p⊗ pCuτ(g)

∂g

∂ξ

)
+Cu·

(
p⊗ p

∂

∂ξ

(
τ(g)∇xg

))
−|Cu|2τ(g)∂g

∂ξ

−Cu · p⊗ pCu
∂

∂ξ

(
τ(g)

∂g

∂ξ

)
−(∇xu)p · (U + UT

)
pτ(g)

∂g

∂ξ

− (
(∇xu)p · p)(Up · p) ∂

∂ξ

(
τ(g)

∂g

∂ξ

)
+G(p).

(65)

Now, to take the projection of this expression, we need lemma 4.1. We get:

'A(F1, u) = −∇x·
(

2ξ

d
τ(g)∇xg

)
+Cu · τ(g)∇xg + ∇x·

(
2ξ

d
Cuτ(g)

∂g

∂ξ

)

+Cu·
(

2ξ

d

∂

∂ξ
(τ(g)∇xg)

)
−|Cu|2

(
τ(g)

∂g

∂ξ
− 2ξ

d

∂

∂ξ

(
τ(g)

∂g

∂ξ

))

− (
U + UT

) : (∇xu)2ξ
d
τ(g)

∂g

∂ξ
− (

U + UT
) : (∇xu) 4ξ2

d(d + 2)

∂

∂ξ

(
τ(g)

∂g

∂ξ

)
.

(66)

Introducing the traceless rate-of-strain tensorσ (u)= U +UT also given by (60), and factorizing the expression
(66), we obtain:

'A(F1, u) = −2

d
ξ1−d/2

(
∇x −Cu ∂

∂ξ

)(
τ(ξ, g)ξd/2

(
∇x −Cu ∂

∂ξ

)
g

)

− 4

d(d + 2)
ξ1−d/2 ∂

∂ξ

(
τ(ξ, g)ξ

d+2
2
∂g

∂ξ

)(
σ (u) : (∇xu)).

(67)

Inserting the above found expressions for'A(g, u) and'A(F1, u) into the first equation (52) leads to the first
equation (58).
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Now, to make the second equation of system (52) explicit, we need to computeB(g, u) andB(F1, u). B(g, u)
is given by (46). With the expression ofF1 given by (62), we also have

B(F1, u) = ∇x·
(∫

Rd
(Up · p)p⊗ pτ(g)

∂g

∂ξ
dp

)

−
(
∂

∂t
+ u · ∇x + ∇xu+ (∇x · u)I

)(∫
Rd
p⊗ p

(
τ(g)∇xg−Cuτ ∂g

∂ξ

)
dp

)
,

(68)

and then, using lemma 4.1:

B(F1, u)= −∇x · (µτσ (u))−
(
∂

∂t
+ u · ∇x + ∇xu+ (∇x · u)I

)(∫
Rd

2ξ

d

(
τ(g)∇xg −Cuτ ∂g

∂ξ

)
dp

)
, (69)

with σ (u) defined by (60) andµτ by (61). We deduce that the second equation (52) leads to

ρ

(
∂u

∂t
+ (∇xu)(u)

)
+2

d
∇xW

= ε∇x · (µτσ (u))+ ε
(
∂

∂t
+ u · ∇x + ∇xu+ (∇x · u)I

)(∫
Rd

2ξ

d
τ(ξ, g)

(
∇xg −Cu ∂g

∂ξ

)
dp

)
. (70)

Now, introducing ū according to (59) and integrating the first equation of (70) with respect to dp =
|Sd−1|(2ξ)(d−2)/2 dξ , we obtain:

∂ρ

∂t
+ ∇ · (ρu)= ε∇x ·

∫
Rd

2ξ

d
τ

(
∇xg −Cu ∂g

∂ξ

)
dp = −∇x · (ρ(ū− u)), (71)

which is nothing else than the continuity equation:

∂ρ

∂t
+ ∇ · (ρū)= 0. (72)

Then, repeatedly using the continuity equation (72) in the following computations, we have:

ρCu +
(
∂

∂t
+ u · ∇x + ∇xu+ (∇x · u)I

)
(ρū− ρu)

= [∇x · (ρū)]u+
(
∂

∂t
+ ∇xu

)
(ρū)+ (

u · ∇x + (∇x · u)I)(ρū− ρu)
= ρCū + [∇x · (ρū)](u− ū)+ [∇xu− ∇xū](ρū)+ (∇x · u)(ρū− ρu)+ (u · ∇x)(ρū− ρu)
= ρCū + [

(u− ū) · ∇x](ρū− ρu)+ [∇x · (u− ū)](ρū− ρu).

Sinceu− ū is of the order of O(ε), we deduce that:

ρCu+
(
∂

∂t
+ u · ∇x + ∇xu+ (∇x · u)I

)
(ρū− ρu)= ρCū + O

(
ε2), (73)

which implies that (70) is equivalent to (58) up to second order terms inε. This completes the proof of
proposition 4.3. ✷
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Remark1: Letf (v)= F(v− u), with F given by (47). Then,

∫
vf dv =

∫
(v− u)f dv + u

∫
f dv =

∫
pF dp+ u

∫
F dp = ρu+ ε

∫
pF1 dp+ O

(
ε2).

But, with (53), we have

ε

∫
pF1 dp = −ε

∫
Rd

2ξ

d
τ

(
∇xg −Cu ∂g

∂ξ

)
dp = ρ(ū− u).

Therefore,

ρū=
∫
vf dv+ O(ε2),

showing thatū is the ‘true’ mean velocity of the distribution function up to terms of orderε2. This remark
explains why the continuity equation (72) and the momentum conservation (second equation of (58)) have a
more natural expression once expressed in terms ofū. At variance, the equation forg is simpler in terms of
the velocityu about which it is isotropic. The fluid velocitȳu and the ‘isotropization velocity’u only differ by
orderε terms.

5. System of moments and closure approximations

5.1. Moment system

As mentioned above, the moment system derived from (1), (2) is closed at any order. We shall see that the
situation is different for the model (58). In all this section, we assume thatτ = τ(t, x, ξ, [g]) depends ong only
through moments ofg with respect to theξ variable. For instance,τ(t, x, ξ, [g])= τ1(t, x, ξ, ρ,W).

Multiplying the first equation of (58) byξ k+d/2−1 and integrating overξ we get:




∂Mk

∂t
+ u · ∇xMk + 2k + d

d
(∇x · u)Mk = ε

[
(Dv)k + (Dh)k],

(Dv)k = 4k

d(d + 2)

((
k + d

2

)
Mτ,k +Mτξ ,k+1

)(
σ (u) : ∇xu),

(Dh)k = 2

d

[
8xMτ,k+1 − ∇x ·Mτx,k+1 − ∇x ·

(
P
((
k+ d

2

)
Mτ,k +Mτξ ,k+1

))]

− 2k

d
P ·

[
∇xMτ,k −Mτx,k −P

((
k+ d

2
− 1

)
Mτ,k−1 +Mτξ ,k

)]
,

(74)

with the following notations:

τx = ∇xτ, τξ = ∂τ

∂ξ
, P = 1

ρ
∇x

(
2W

d

)
,

and whereMk andMφ,k are the moments ofg defined for an arbitrary functionφ(ξ) by:

Mk =
∫

Rd
ξ kg(ξ)dp, Mφ,k =

∫
Rd
ξ kφ(ξ)g(ξ)dp. (75)
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We recall thatdp = |Sd−1|(2ξ)(d−2)/2 dξ . For k = 0, (74) coincides with the continuity equation (72). Let us
compute the order 1 moment equation, we have:




∂W

∂t
+ u · ∇xW + d + 2

d
(∇x · u)W = ε

[
(Dv)1 + (Dh)1],

(Dv)1 = 4

d(d + 2)

(
d + 2

2
Mτ,1,+Mτξ ,2

)(
σ (u) : ∇xu),

(Dh)1 = 2

d

[
8xMτ,2 − ∇x ·Mτx,2 − ∇x·

(
P
(
d + 2

2
Mτ,1 +Mτξ ,2

))]

− 2

d
P ·

[
∇xMτ,1 −Mτx,1 −P

(
d

2
Mτ,0 +Mτξ ,1

)]
.

(76)

Equations (61) and (59) can be expressed in terms of moments:

µτ = 4

d(d + 2)

[
d + 2

2
Mτ,1 +Mτξ ,2

]
, (77)

and

u− ū= ε
2

ρd

[
∇xMτ,1 −Mτx,1 −P

(
d

2
Mτ,0 +Mτξ ,1

)]
. (78)

Besides, we can write

∂W

∂t
+ ū · ∇xW + d + 2

d
(∇x · ū)W = ε

[
µτσ (ū) : ∇xū− ∇xq], (79)

where the heat flux vectorq is given by:

q = −2

d
(∇xMτ,2 −Mτx,2)+

d + 2

d

(
u− ū
ε

W + µτ

ρ
∇xW

)
. (80)

Collecting the continuity equation (72), the momentum conservation equation (second equation of (58)), and
the energy equation (79), we obtain the following extension of the compressible Navier–Stokes equations:




∂ρ

∂t
+ ∇x · (ρū)= 0,

ρ

(
∂ū

∂t
+ (∇xū)(ū)

)
+2

d
∇xW = −ε∇x · (µτσ (ū)),

∂W

∂t
+ ū · ∇xW + d + 2

d
(∇x · ū)W = ε

[
µτσ (ū) : ∇xū− ∇x · q],

(81)

whereµτ andq are respectively the viscosity and the heat flux and are given by (77) and (80). The system (81)
is not closed because of the presence of order 2 moments such asMτ,2, Mτx,2 andMτξ ,2, in the expressions of
the heat fluxq and of the viscosityµτ . In the next section we shall investigate some closure hypotheses and
compare the obtained system with the usual Navier–Stokes equations. The closure hypotheses are based on the
two classes of explicit solutions of the non-dissipative system (1), (2), as discussed in section 2.
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5.2. Closure approximations

5.2.1. Dirac closure

We assume thatg is the Dirac delta measure (11), that is:

g(ξ)= 1

|Sd−1|(2ξ)
1−d/2ρ(t, x)δ

(
ξ − e(t, x)), e = W

ρ
. (82)

As explained in section 2, this Ansatz is the most natural bridge between usual gas dynamics and the present
multivalued energy model. We have

Mφ,k =
∫

Rd
ξ kφ(ξ)g(ξ)dp= ρekφ(e). (83)

Substituting this in (77) and (78), we obtain

µτ = 4

d(d + 2)

[
d + 2

2
ρeτ(e)+ ρe2τξ (e)

]
,

u− ū
ε

= 2

d

1

ρ

[
ρe∇xe− 2

d
e∇x(ρe)

]
τξ (e). (84)

We also have

∇xMτ,2 −Mτx,2 = τ(e)∇x(ρe2)+ ρe2τξ (e)∇xe.
Then, using the expression of the heat flux given by (80), we get

q =
[
−2

d
ρe∇x(e)+ 4

d2
e∇x(ρe)

]
τ(e)+

[
4

d2
ρe2∇x(e)− 8

d3
e2∇x(ρe)

]
τξ (e).

This can be written in the following factorized form

q = 2

d
e

[
2

d
eτξ (e)− τ(e)

][(
1− 2

d

)
ρ∇xe− 2

d
e∇xρ

]
. (85)

Hence, we recover a ‘Fourier–Fick law’ for the heat flux:

q = −κ∇xT̃ , T̃ = e(ρe)−2/d, (86)

T̃ being a generalized temperature, i.e. a quantity such that the heat flux is proportional to the opposite of its
gradient. The coefficient

κ = −2

d
(ρe)

d+2
d

[
2

d
eτξ (e)− τ(e)

]
, (87)

can be interpreted as a generalized thermal conductivity. A generalized Prandlt number can be defined as the
ratio of the viscosity to this thermal conductivity:

Pr := d + 2

2

µτ

κ
= d + 2

2
(ρe)−

2
d

τ (e)+ 2
d+2eτξ (e)

τ(e)− 2
d
eτξ (e)

. (88)

In the case of a power lawτ(ξ)= τ0ξ
k0, we get:

κ = τ0
2(d − 2k0)

d2
ρ
d+2
d e

d+2
d +k0, µτ = τ0

2(d + 2+ 2k0)

d(d + 2)
ρek0+1, P r = d(d + 2+ 2k0)

2(d − 2k0)

1

(ρe)2/d
.
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We see that the heat conductivity and the viscosity remain positive if and only ifd−2k0> 0 andd+2+2k0> 0,
i.e.−(1+ d/2) < k0< d/2. In dimensiond = 3, this gives the limitation−5/2< k0< 3/2 and the values

κ = τ0
2

9
(3− 2k0)ρ

5/3e5/3+k0, µτ = τ0
2

15
(5+ 2k0)ρe

k0+1, P r = 3

2

5+ 2k0

3− 2k0

1

(ρe)2/3
.

5.2.2. Maxwellian closure

We investigate the Maxwellian closure which is the natural closure if the kinetic equation (23) corresponds
to microscopic molecular motions. It consists in assumingg to be a Maxwellian:

g(t, x, ξ)= ρ(t, x)

(2πT (t, x))d/2
exp

(
− ξ

T (t, x)

)
, (89)

andT is related toW by the perfect gas equation-of-stateW = (d/2)ρT . We shall restrict the functionτ(ξ) to
power lawsτ(ξ)= 1

ρ
τ0(x, t)ξ

k0. Then we obviously haveMτ,k = 1
ρ
τ0Mk+k0 andMτξ ,k = 1

ρ
τ0k0Mk+k0−1. As g

is given by (89) we haveMk = αkρT
k , with

αk = 2d/2−1|Sd−1|
(2π)d/2

=

(
k+ d

2

)
= =(k+ d

2)

=(d2)
, (90)

and= is the usual Euler function:=(x) = ∫ +∞
0 tx−1 exp(−t)dt , for x > 0. In particularα0 = 1 andαk+1 =

(k+ (d/2))αk , which, whenk is an integer, givesαk = (d/2)((d/2)+ 1) · · · ((d/2)+ k− 1). Hence

µτ = 4

d(d + 2)

(
k0 + d

2
+ 1

)
τ0αk0+1T

k0+1, (91)

and

u− ū
ε

= 2τ0

ρ2d

[
αk0+1∇x(ρT k0+1)− αk0

(
d

2
+ k0

)
T k0∇x(ρT )

]
. (92)

Now we insert these formulas into the expression of the heat flux given by (80) and, after some computation
we obtain

q = −τ0

d

(
2k2

0 + 2k0 + d + 2
)
αk0+1T

k0+1∇xT , (93)

which has the form of a ‘Fourier–Fick law’:q = −κ∇xT , whereT is now the usual temperature, and where

κ = τ0

d

(
2k2

0 + 2k0 + d + 2
)
αk0+1T

k0+1. (94)

Now using the expression (91) we get the following value for the Prandlt number:

Pr := d + 2

2

µτ

κ
= 2k0 + d + 2

2k0 + d + 2+ 2k2
0
. (95)

Hence, fork0 ∈ [0,+∞], the Prandlt number can take all the values of the interval]0,1]. In particular the
value Pr = 2/3, which is the physically realistic value for monoatomic gases ford = 3, is reached for
k0 = 1

4(1+ √
21)≈ 1.4.
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5.3. Closure approximations for higher order moment system

We consider the moment system (74) truncated to the orderN � 2, i.e. the system of equations (74) of
unknownsMk , for 0� k �N . We know that this system ofN + 1 equations is not a closed system because of
the presence of moments of the kindMφ,k with 0 � k � N , and of the kindMφ,N+1. In this section we show
how to derive an approximate closed system ofN + 1 equations. For that purpose, we assume that the function
g is not far from either a Dirac or a Maxwellian distribution.

First we analyse the Dirac closure. We have to express the momentsMφ,k , 0 � k � N + 1, in terms of
momentsMk for 0� k �N . It is clear from (83) that:

Mφ,k = φ(e)Mk, for 0 � k �N; Mφ,N+1 = eφ(e)MN, (96)

where we recall thate =W/ρ andφ is an arbitrary function ofξ . Substituting these two relations in (74) for
0� k �N , we obtain a closed system of unknowns(Mk)0�k�N .

Now consider a Maxwellian closure approximation and suppose a power law relationτ(ξ) = τ0ξ
k0 with

k0 ∈ N. In this case:

Mτ,k = τ0Mk+k0, Mτx,k = (τ0)xMk+k0, Mτξ ,k = τ0k0Mk+k0−1.

Thus, to obtain a closed system of moments(Mk)0�k�N , we have to express the momentsMk+k0 orMk+k0+1

for 0 � k �N in terms of moments(Mk)0�k�N only. We use thatMk = αkρT k, and deduce the relation:

Mk+s = αk+s
αk

T sMk, (97)

for 0 � k � N , s ∈ N. This relation enables us to substitute momentsMk , k0 � k � k0 +N + 1, appearing in
(74), by momentsMk for 0� k �N . We then obtain a closed system of unknowns(Mk)0�k�N .

Whether these moment systems give rise to well-posed problems is of course a very important question,
which we shall defer to future work.

6. Extension to more general wave-particle collision operators

6.1. A collision operator with angular dependence

We consider the following extension of the collision operator (14), (15):

Q(f,u)= 1

|Sd−1|
∫

Sd−1
σ

(
ω,ω′,

|v− u|2
2

, [f ]
)[
f
(
u+ |v− u|ω′)− f (u+ |v− u|ω)]dω′. (98)

We shall assume that the cross sectionσ is rotationally invariant, i.e. has the form:σ (ω,ω′)= σ0(ω ·ω′) > 0. As
for the functionτ in (14),σ0 is an operator acting on the velocity dependence off such thatσ0(x, t,ω ·ω′, [f ])
depends onv only through|v − u|2/2. Again, an example isσ0(ω · ω′, [f ]) = σ ′

0(ω · ω′,Pu(f )) whereσ ′
0 is

a local function ofPu(f ). More complex examples can also be envisaged. In this section we shall see how
macroscopic models associated with this collision operator differ from those obtained so far. First we state the
following:
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PROPOSITION 6.1: (i) We have
∫

Sd−1
σ0

(
t, x,ω ·ω′, ξ, [f ])(ω′ −ω)dω′ = −(τ1)

−1(t, x, ξ, [f ])ω, (99)

where

(τ1)
−1(t, x, ξ, [f ]) =

∫
Sd−1

(
1−ω′ ·ω)σ0

(
t, x,ω ·ω′, ξ, [f ])dω′, (100)

is independent ofω, and is the so-called momentum transfer frequency.

(ii) The collision operator(98) satisfies the following conservation properties:
(a)

∫
Sd−1

Q(f,u)(u+ |v− u|ω)dω= 0,

(b) Q(f,u) is momentum-preserving if and only ifu andf are linked by the relation:
∫

Rd
(v− u)(τ1)

−1(t, x, ξ, [f ])f (v)dv = 0, (101)

whereτ1 is defined by(100).

The proof is standard and is omitted.

Now, let us perform the change to the local fluid frame (29). The expression of the collision operator is
changed to

LF(p)= 1

|Sd−1|
∫

Sd−1
σ0

(
ω ·ω′, ξ,F

)[
F
(|p|ω′)− F (|p|ω)]dω′, (102)

which is a linear operator if the dependence of the cross section uponf is freezed. Asσ0> 0, its null-space is
clearly the space of isotropic functions. This is easily shown from the following weak formulation:
∫

Sd−1
LF

(|p|ω)φ(|p|ω)dω

= −1

2

1

|Sd−1|
∫ ∫

Sd−1×Sd−1
σ0

(
ω ·ω′, ξ,F

)[
F
(|p|ω′) −F (|p|ω)]× [

φ
(|p|ω′)− φ(|p|ω)]dωdω′,

(103)

for all test functionsφ.

Following the method used in section 2.3, we can write similarly to (52):


'A(g, u)+ ε'A

(
L−1[(I −')A(g, u)], u) = 0,

B(g, u)+ εB(L−1[(I −')A(g, u)], u) = 0.
(104)

Using the expression of(I −')A(g, u) given by (62), we obtain


'A(g, u)+ ε'A

((
∇xg−Cu ∂g

∂ξ

)
h(p)− ∂g

∂ξ
U :H(p),u

)
= 0,

B(g, u)+ εB
((

∇xg −Cu ∂g
∂ξ

)
·h(p)− ∂g

∂ξ
U :H(p) , u

)
= 0,
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whereh(p) andH(p) are respectively vector and matrix functions, solutions to:

Lh(p)= p and LH(p)= p⊗ p− 2ξ

d
I. (105)

The resolution of (105) withL given by (102) gives:

h(p)= −τ1p and H(p)= −τ2

[
p⊗ p− 2ξ

d
I

]
, (106)

whereτ1 is given by (100) withf = g andτ2 is given by:

(τ2)
−1(t, x, ξ, [g]) = d − 1

d

∫
Sd−1

σ0
(
t, x,ω ·ω′, ξ, [g])(1− (

ω ·ω′)2)
dω′. (107)

Then the computations lead to the following macroscopic model:




∂g

∂t
+ u · ∇xg − (∇x · u)2ξ

d

∂g

∂ξ

= ε
2

d
ξ1−d/2

(
∇x −Cu ∂

∂ξ

)(
τ1(ξ, g)ξ

d/2
(

∇x −Cu ∂
∂ξ

)
g

)

+ ε 4

d(d + 2)
ξ1−d/2 ∂

∂ξ

(
τ2(ξ, g)ξ

d+2
2
∂g

∂ξ
g

)(
σ (u) : (∇xu)),

ρ

(
∂ū

∂t
+ (∇xū)(ū)

)
+2

d
∇xW = −ε∇x · (µτ2σ (ū)),

(108)

with

ρ(ū− u)= −ε
∫

Rd

2ξ

d
τ1

(
∇xg−Cu ∂g

∂ξ

)
dp, (109)

andµτ2 given by (61) withτ replaced byτ2. We notice that the model is of the same form as (58), but with two
different characteristic times: the first oneτ1 is for the heat dissipation operator and the other oneτ2, for the
viscosity operator.

6.2. A Fokker–Planck type operator

An interesting limiting case of the angular dependent collision operators (98) is when the cross sectionσ

concentrates on small angle deviations, i.e. behaves like a Dirac delta measure of the setω = ω′. In this so-
called ‘grazing collision limit’ (see, e.g., [16] and more recently, [17,18] for the case of the Landau limit of
the classical Boltzmann equation), the operator (98) converges to a diffusion operator in the angle variable.
Indeed, let the cross sectionση(ω,ω′)= σ̄0(|ω−ω′|/η) be parametrized by the parameterη > 0 and letQη be
the corresponding collision operator according to (98). Then, formally, at the leading order whenη goes to 0,
Qη is proportional to the following Fokker–Planck type collision operator:



Q0(f, u)= ∇v · [@(v − u)∇vf ],
@(w)= (d − 1)(τ1)

−1
(
t, x,

|w|2
2
, f

)(|w|2I −w⊗w
)
,

(110)
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with τ1 given by (100). To some extent, the cases of the angle-independent collision time operator (14), (15)
and of the grazing collision limit (110) are two opposite limiting cases

The integral ofQ0 against all functions ofξ = |v − u|2/2 vanishes because ker@(w)= Rw. The Fokker–
Planck operator is momentum-preserving if and only iff andu are linked by (101). With the change to the
local frame (29), the collision operator is changed into

LF = ∇p · [@(p)∇pF ]
. (111)

The computations are the same as in section 6.1 and we find the macroscopic model (108) in which the two
time scalesτ1 andτ2 are now linked by

τ2 = d − 1

2d
τ1 .

7. Conclusion

In this work, we have discussed the properties of a gas dynamics model in which the energy in the frame
moving with the fluid is multivalued (or more precisely, measure-valued). This model is derived from a kinetic
model involving a collision operator which describes the isotropization of the distribution function about the
fluid velocity. We have been specifically concerned with the establishment of the dissipative corrections to
the purely convective multivalued energy model, in the case where the isotropization rate is a function of the
particle energy. In this case, the moment system associated with the so-obtained model appears close to the
usual compressible Navier–Stokes equations but with expressions of the viscosity and heat flux depending
on the details of the energy distribution of the particles. Two closures of the moment equations have been
investigated: the Dirac and the Maxwellian closures. In both cases, the expressions of the viscosity and thermal
conduction are different from the usual ones. We have tried to give arguments why these features could be
useful in an attempt to model fluid turbulence from kinetic theory. The future directions of this work are
twofold: first we shall try to validate these ideas against numerical solutions of well established turbulent flows;
second, we shall attempt to improve the physical relevance of the model by better including the already known
phenomenology of turbulence.
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